
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 2, Issue 13; July-September, 2015 pp. 82-86
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Overhead Analysis between Xen & KVM for
Security Primitives

Shikha Dixit1 and Rahul Hada2
1School of Engineering & Technology, Poornima University, Jaipur

2Department of Computer Engineering, Poornima University
E-mail: 1shikhadixit032@gmail.com, 2rahul.hada@poornima.edu.in

Abstract—In recent years, Virtualization is the fundamental
technology for corporate data centre consolidation and cloud
computing. Security is a critical issue in Virtualization Technology.
To overcome Security Issues such as Authenticity and Integrity, an
analysis was carried out between Xen & KVM Hypervisors by
creating virtual machines on it using Red Hat Linux Environment and
in the last conclusion will be presented that, which virtualization
platform (Xen/KVM) provide better performance by reducing
overhead after applying SELinux Security Primitive. In this paper
some of the works related to the implementation of Security
Primitives on Virtual Machines deployed on Hypervisors has been
done, which helped to understand the risk that occurs in virtualized
environment and improve system reliability by applying SELinux
Security Primitives on Xen & KVM Hypervisor. Furthermore,
Swappiness & Huge Memory techniques was used for reducing the
increased overhead due to security primitives. Experimental work
included implementation of various virtual machines having Red Hat
as guest OS on hypervisor Xen and KVM to analysis which
virtualization platform or hypervisor (Xen & KVM) provide better
performance by reducing overhead for security primitives.

Keywords: Xen, KVM, SELinux, Swappiness, Huge Memory.

1. INTRODUCTION

The recent growth in cloud environments has accelerated the
advancement of virtualization through hypervisors; with so
many different virtualization technologies, it is difficult to
ascertain how different hypervisors impact virtual machines
and application performance and whether the same
performance can be achieved for each hypervisor. Many
different Hypervisors (both open source and commercial) exist
today, each with their own advantages and disadvantages. This
introduces a large number of new and challenging research
questions.

The key technology enabling cloud computing is virtualization
and the hypervisor is the software layer that implements it. A
number of security concerns that needs to be tackle due to the
privilege level of the hypervisor.

In recent years, with the rapid development of Internet and the
commonly use of computer, there are more comprehensive
ways for sharing information resources.

While the information sharing, it is also necessary for us to
prevent both non-authorized users and programs access to
sensitive information. As we know access control is designed
to protect the security of the information which was stored and
handled in information system. There are two kinds of access
control we usually use nowadays which are discretionary
access control (DAC) and mandatory access control (MAC).

Discretionary Access Control is an effective way to protect the
computer system resources from being accessed illegally. The
owner of the resource specifies whether other users can access
the resource. However, it has an obvious drawback that is this
control is independent. Although this independence provides
users with great flexibility; it also brings a serious security
problem.

SELinux affords Linux a flexible, configurable MAC
mechanism, which provides a mechanism to enforce the
access control based on confidentiality and integrity
requirements, besides it offers an effective protection of
information security.

In this paper we will describe in what way SELinux uses
various models and policies to secure the information safety,
especially represent how multilevel security policy and type
enforcement provide confidentiality and integrity protection.

2. SELINUX

Security-Enhanced Linux (SELinux) is an implementation of a
mandatory access control mechanism in the Linux kernel,
checking for allowed operations after standard discretionary
access controls are checked. It was created by the National
Security Agency and can enforce rules on files and processes
in a Linux system, and on their actions, based on defined
policies.

DAC access decisions are only based on user identity and
ownership, ignoring other security-relevant information such
as the role of the user, the function and trustworthiness of the
program, and the sensitivity and integrity of the data. Each
user typically has complete discretion over their files, making
it difficult to enforce a system-wide security policy.

mailto:1shikhadixit032@gmail.com

Overhead Analysis between Xen & KVM for Security Primitives 83

Security-Enhanced Linux (SELinux) adds Mandatory Access
Control (MAC) to the Linux kernel, and is enabled by default
in Red Hat Enterprise Linux. A general purpose MAC
architecture needs the ability to enforce an administratively-set
security policy over all processes and files in the system,
basing decisions on labels containing a variety of security-
relevant information.

On Linux operating systems that run SELinux, there are Linux
users as well as SELinux users. SELinux users are part of
SELinux policy.

3. XEN & KVM HYPERVISOR OVERVIEW

3.1 Xen Hypervisor
A virtual-machine monitor for IA-32, x86-64, Itanium, and
ARM architectures, Xen allows several guest operating
systems to execute on the same computer hardware
concurrently. Xen systems have a structure with the Xen
hypervisor as the lowest and most privileged layer.

The basic components of a Xen-based virtualization
environment are the Xen hypervisor, the Domain0, any
number of other VM Guests, and the tools, commands, and
configuration files that let you manage virtualization.
Collectively, the physical computer running all these
components is referred to as a VM Host Server because
together these components form a platform for hosting virtual
machines.

The Xen hypervisor sometimes referred to generically as a
virtual machine monitor, is an open-source software program
that coordinates the low-level interaction between virtual
machines and physical hardware.

The Dom0 is a virtual machine host environment, also referred
to as Domain0 or controlling.

3.2 KVM Hypervisor
A virtualization infrastructure for the Linux kernel, KVM
supports native virtualization on processors with hardware
virtualization extensions.

KVM is a full virtualization solution for x86 processors
supporting hardware virtualization (Intel VT or AMD-V). It
consists of two main components: A set of Kernel modules
(KVM.ko, KVM-intel.ko, and KVM-amd.ko) providing the
core virtualization infrastructure and processor specific drivers
and a user space program (qemu-KVM) that provides
emulation for virtual devices and control mechanisms to
manage VM Guests (virtual machines).

The term KVM more properly refers to the Kernel level
virtualization functionality, but is in practice more commonly
used to reference the user space component. VM Guests
(virtual machines), virtual storage and networks can be
managed with libvirt-based and QEMU tools. libvirt is a

library that provides an API to manage VM Guests based on
different virtualization solutions, among them KVM and Xen.

4. RELATED WORK

In this work many of the parameters were used to check the
performance of Xen & KVM Hypervisors having guest virtual
machines in virtualized environment. All the performance
parameters are used with and without security primitives. The
performance parameters are as follows:

1. CPU Utilization

2. Memory

3. Read/Write Operations

4.1 CPU Utilization: CPU utilization refers to a computer's
usage of processing resources, or the amount of work handled
by a CPU. Actual CPU utilization varies depending on the
amount and type of managed computing tasks. Certain tasks
require heavy CPU time, while others require less because of
non-CPU resource requirements.

4.2 Memory: Memory refers to any information or data,
often in binary format, that a machine or technology can recall
and use. Data in storage memory remains, and the computer
accesses it through a hard drive.

4.1 Read/Write Operation: Read/write operations are an
extremely important component in determining the overall
performance of the Memory and hard disk, since they play
such an important role in the storage and retrieval of data.

Read: Describes the operations carried out by the processor
when a memory read is executed. Number of sectors read from
the device. The size of a sector is 512 bytes.

Write: Sequence of operations write, Number of sectors
written to the device. The size of a sector is 512 bytes.

5. EXPERIMENT SETUP

5.1 Hardware Specifications

Processor Core i5 @ 2.50GHz
Memory 4 GB
Virtualization Hardware Assisted Virtualization Enabled

5.2 Software Specifications

Native Host Operating System Red Hat 6
VMM Xen 4.1 & KVM
Dom-0 (OS) Red Hat 6
Dom-U (Guest OS) Red Hat 6

6. RESULT & DISCUSSIONS

The experiment results are interpreted in the form of statistical
graphs and the results are analyzed with various statistical
comparisons in accordance to a few of our intriguing cases.
All our interpreted results are presented as an average value of

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 2, Issue 13; July-September, 2015

Shikha Dixit and Rahul Hada

84

the obtained data after repeating the experiment for a
significant number of values.

Table 6.1 shows the performance of Xen & KVM Hypervisor
in terms of CPU Utilization without any Security Primitive,
with Security primitive (SELinux) and it is observed that to
reduce increased overhead, Swappiness has been used at
certain value to get minimum utilization.

Table 6.1: CPU Utilization of Xen versus KVM with or without
Security Primitives after reducing overhead

Hypervisor

Without
Security
primitive

With Security
Primitive

After Overhead
Reduction

 SELinux SELinux
Xen 41.45 45.53 25.44
KVM 32.87 37.64 20.26

Fig. 6.1: Performance between Xen and KVM during CPU
Utilization without Security Primitives, with Security

Primitives and after reducing overhead

Fig 6.1 shows that the comparative analysis of CPU
Utilization performance parameter between Xen & KVM
Hypervisor. Swappiness is used to reduce overhead increases
on CPU Utilization performance after applying Security
primitive SELinux uses 10 to 100 values having interval of 10.
It is observed from the results that after applying Security
Primitive SELinux on Xen Hypervisors overhead increases in
terms of CPU Utilization performance reduced by the value of
swappiness at 20. While in case of SELinux Security Primitive
on KVM hypervisors the value of swappiness is 40.

Table 6.2 shows the performance of Xen & KVM Hypervisor
in terms of Memory Usage without any Security Primitive,
with Security primitive (SELinux) and it is observed that to
reduce increased overhead, Huge Memory Technique has been
used at certain value of Huge Page Size to get minimum
utilization.

Table 6.2: Memory Used of Xen versus KVM with or without
Security Primitives after reducing overhead

 Hypervisor

Without
Security
primitive

With Security
Primitive

After
Overhead
Reduction

 SELinux SELinux
Xen 2248578 2928737 2559378
KVM 1837317 2875255 1547393

Fig. 6.2: Memory Usage between Xen and KVM without Security
Primitives, with Security Primitives and after reducing overhead

Fig 6.2 shows that the comparative analysis of used Memory
performance parameter between Xen & KVM Hypervisor.
Huge Memory technique having huge pages is used to reduce
overhead increases on Memory uses after applying Security
primitives rithm and SELinux from 500 to 1500 huge page
sizes having interval of 500. It is observed from the results
that after applying Security Primitive rithm& SELinux on Xen
Hypervisor overhead increases in terms of used memory
performance reduced by the value of huge pages at 500 &
1000 respectively while in case of KVM hypervisor this value
of huge pages is 1000 for both Security primitives rithm and
SELinux.

Table 6.3 shows the performance of Xen & KVM Hypervisor
in terms of Read Operations without any Security Primitive,
with Security primitive (SELinux) and it is observed that to
reduce increased overhead, Swappiness has been used at
certain value to get minimum utilization.

Table 6.3: Read Operations of Xen versus KVM with or without
Security Primitives after reducing overhead

Hypervisor

Without
Security
primitive

With Security
Primitive

After
Overhead
Reduction

 SELinux SELinux
Xen 1725.67 808.05 1644.71
KVM 2591.93 719 2083.66

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 2, Issue 13; July-September, 2015

Overhead Analysis between Xen & KVM for Security Primitives 85

Fig. 6.3: Performance between Xen and KVM during Read

Operations without Security Primitives, with Security
Primitives and after reducing overhead

Fig 6.3 shows that the comparative analysis of Read operation
performance parameter between Xen & KVM Hypervisor.
Swappiness is used to reduce overhead increases on Read
Operation performance after applying Security primitives
SELinux from 10 to 100 values having interval of 10. It is
observed from the results that after applying Security
Primitive SELinux on Xen Hypervisors overhead increases in
terms of Read operation performance reduced by the value of
swappiness at 30 respectively while in case of KVM
hypervisor this value of swappiness is 30 for Security
Primitives rithm and SELinux respectively.

Table 6.4 shows the performance of Xen & KVM Hypervisor
in terms of Write Operations without any Security Primitive,
with Security primitive (SELinux) and it is observed that to
reduce increased overhead, Swappiness has been used at
certain value to get minimum utilization.

Table 6.4: Write Operations of Xen versus KVM with or
without Security Primitives after reducing overhead

Hypervisor

Without
Security
primitive

With Security
Primitive

After
Overhead
Reduction

 SELinux SELinux
Xen 10821.5 5548.21 5817.62
KVM 9514.06 4543.54 4825.45

Fig 6.4 shows that the comparative analysis of Write operation
performance parameter between Xen & KVM Hypervisor.
Swappiness is used to reduce overhead increases on Write
Operation performance after applying Security primitive
SELinux from 10 to 100 values having interval of 10. It is
observed from the results that after applying Security
Primitive SELinux on Xen Hypervisors overhead increases in
terms of Write operation performance reduced by the value of
swappiness 60 respectively while in case of KVM hypervisor
this value of swappiness is 60 for both Security Primitives
rithm and SELinux respectively.

Fig. 6.4: Performance between Xen and KVM during Write
Operations without Security Primitives, with Security

Primitives and after reducing overhead

7. CONCLUSION

In this work, implementation of virtual machines have been
performed on Hypervisors Xen and KVM to analyze which
virtualization platform (Xen/KVM) provide better
performance by reducing overhead for Security Primitive in
virtualized environment by applying SELinux Security
primitives. Results shows that KVM Hypervisor provides
better performance by utilizing less CPU & Memory with
reduced overhead even after applying Security Primitives in
comparison to the Xen Hypervisor in Linux Environment. On
the other hand, KVM had higher read operations as compare
to Xen while Xen had higher write operations than KVM
according to experimental results. So, it has been believed that
KVM may have performed better than Xen in terms of CPU
Utilization, Memory Usages and Read Operations.

8. ACKNOWLEDGEMENTS

I would like to express my deep gratitude and thanks to Dr.
Mahesh Bundele (Coordinator, Research), Poornima
University for giving me an opportunity to work under his
guidance for review of research papers and his consistent
motivation & direction in this regard. I would also express my
sincere thanks to Mr. Rahul Hada (Associate Professor,
CE), Poornima University for their guidance and support.

REFERENCES

[1] Sabahi, F., "Virtualization-level security in cloud computing,"
2011 IEEE 3rd International Conference on Communication
Software and Networks (ICCSN), pp.250, 254, 27-29 May 2011.

[2] Sailer, R.; Jaeger, T.; Valdez, E.; Caceres, R.; Perez, R.; Berger,
S.; Griffin, J.L.; van Doorn, L., "Building a MAC-based security
architecture for the Xen open-source hypervisor," 21st Annual
Conference Computer Security Applications, pp.10 pp.,285, 5-9
Dec. 2005.

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 2, Issue 13; July-September, 2015

Shikha Dixit and Rahul Hada

86

[3] Sahoo, J.; Mohapatra, S.; Lath, R., "Virtualization: A Survey on
Concepts, Taxonomy and Associated Security Issues," 2010
Second International Conference on Computer and Network
Technology (ICCNT), pp.222, 226, 23-25 April 2010.

[4] [Somani, G.; Agarwal, A.; Ladha, S., "Overhead Analysis of
Security Primitives in Cloud," 2012 International Symposium on
Cloud and Services Computing (ISCOS), pp.129, 135, 17-18
Dec. 2012.

[5] Todd Deshane, Muli Ben-Yehuda, Amit Shah and Balaji Rao,
“Quantitative Comparison of Xen and KVM”, Xen Summit,
June 23-24, 2008.

[6] Xiao Xu; Chuangbai Xiao; Chaoqin Gao; Guozhong Tian, "A
study on confidentiality and integrity protection of SELinux,"
2010 International Conference on Networking and Information
Technology (ICNIT), pp.269, 273, 11-12 June 2010.

[7] Xianghua Xu; Peipei Shan; Jian Wan; Yucheng Jiang,
"Performance Evaluation of the CPU Scheduler in XEN," 2008
International Symposium on Information Science and
Engineering, ISISE, pp.68, 72, 20-22 Dec. 2008.

[8] Xiantao Zhang; Yaozu Dong, "Optimizing Xen VMM Based on
Intel® Virtualization Technology," 2008 International
Conference on Internet Computing in Science and Engineering,
ICICSE, pp.367, 374, 28-29 Jan. 2008.

[9] YamunaDevi, L.; Aruna, P.; Sudha, D.D.; Priya, N., "Security in
Virtual Machine Live Migration for KVM," 2011 International
Conference on Process Automation, Control and Computing
(PACC), pp.1,6, 20-22 July 2011.

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 2, Issue 13; July-September, 2015

	1. Introduction
	2. SELinux
	3. Xen & KVM Hypervisor Overview
	4. Related Work
	5. Experiment Setup
	6. Result & Discussions
	7. Conclusion
	8. Acknowledgements
	References

